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Abstract: - The Lenstra-Lenstra-Lovász (LLL) algorithm is an effective lattice reduction method in multi-input-
multi-output (MIMO) systems. Its modified version Fix-LLL (F-LLL)unilaterally aims to largely decrease the 
computation complexity in size reduction, but size reduction in LLL algorithm is closely associated with 
column swap procedure. This characteristic is harmful to independently design an optimum proposal for these 
two algorithmic parts. In this paper, a novel individual process F-LLL algorithm divides the overall process of 
LLL algorithm into two individual procedures. The column swap procedure of the novel algorithm is modified 
by searching for the potential column swaps through the whole basis. Until no basis is selected, the procedure 
terminates and global size reduction is achieved. We mainly design two schemes for selecting potential column 
swaps: offset coefficient selection criterion (OCSC) and maximum slope selection criterion (MSSC). 
Simulation results show both OCSC-F-LLL and MSSC-F-LLL can reduce computation complexity and 
performance loss compared to the LLL algorithm. 
Key-Words: - LLL algorithm; lattice reduction; individual process; MIMO system. 
 
1 Introduction 

Multi-input multi-output (MIMO) systems have 
been adopted in several 3G and 4G standards. 
Owing to its high spectral efficiency and large 
coverage, MIMO will still be the key technology in 
future 5G standards [1].In MIMO communication 
systems lattice reduction (LR) represents a main 
stream of decoding techniques [2]-[3]. Now LR 
plays a crucial role in developing different 
computationally efficient algorithms and achieves 
reasonably perfect performance [4].In 1982, the 
Lenstra-Lenstra-Lovász (LLL) algorithm, the most 
practical and commonly-used LR algorithm, was 
introduced [5] .The LLL algorithm is featured by 
polynomial complexity with respect to dimension n 
and several LLL-aided detectors can collect full 
diversity like the maximum likelihood (ML) 
decoding. The performance gap between LLL and 
ML decoding has been identified by a proximity 
factor method [6]. A complex LLL (CLLL) 
algorithm straightforwardly performs the LR with a 
complex-valued matrix [7]. CLLL expands the 
definition of basis reduction to a complex field and 
thus further reduces (nearly a half) the algorithmic 
complexity. Simulation results show CLLL requires 
fewer arithmetic operations than LLL and also 
satisfies the performance of several combinations of 
linear equalizers [8]-[9]. 

However, the pursuit of optimum performance 
results in the extremely high whole complexity of 
LLL algorithm. Moreover, the LLL algorithm is 
featured by polynomial complexity with respect to 
the dimension n, which may not be strong enough 
for combination of a few equalizers [10]. The LLL 
algorithm consists of a column swap procedure and 
a size reduction procedure. The basis can do column 
swap only after the Lovász condition is satisfied. 
Plenty research aims at changing the Lovász 
condition to largely improving the arithmetic 
operating speed. The effective LLL (E-LLL) 
algorithm loosely imposes an ascending order on 
diagonal elements of channel matrix [11]. E-LLL is 
a weaker version of LLL since it has a provable 
complexity bound  3 logO n n , which is one order 

lower than  4 logO n n of LLL algorithm [12]. 
Furthermore, an even weaker criterion called 
diagonal reduction [13] only imposes one single 
constraint on diagonal elements. The diagonal 
reduction algorithm, when combined with the 
successive interference cancelation (SIC) decoding, 
has identical performance as the LLL algorithm.  

Meanwhile, besides modifying conditions of size 
reduction and column swap procedure, algorithm 
redesigning is also a research focus. A possible 
swap LLL algorithm (PSLLL) for lattice reduction 
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is modified by searching for the next column swap 
through the whole basis instead of the sequential 
procedure in the original LLL algorithm [14]. This 
complex-value-based scheme absolutely changes the 
whole process of LLL. Other schemes combined 
with LLL algorithm, such as greedy column traverse 
strategy [15] and fast-Givens rotation scheme [16], 
still hold the same designation idea. Some other 
details of the MIMO technology and lattice 
reduction based on the LLL algorithm can be seen 
in Refs. [17]-[19]. 

Based on the statistical law, a novel F-LLL 
algorithm [20] tries to modify the convergence 
criterion of  which is strongly related to size 
reduction and column swap procedure. F-LLL 
applies a fix method to substitute the original round 
method in LLL such that the whole algorithm will 
have higher probability of skipping two steps of 
reduction. However, no compromise between 
complexity and performance is satisfied. Usually 
there is a big performance loss compared to original 
LLL, especially when the number of iterations and 
the size of the MIMO system increase. Also F-LLL 
is not stable enough. 

In this paper, we put forward a series of 
individual process version of F-LLL algorithms to 
make a better trade-off between complexity and 
algorithmic performance. In original LLL, size 
reduction and column swap procedure are closely 
related. A proper optimization scheme in size 
reduction may not work best for the subsequent 
column swap procedure. Accordingly, the main idea 
of individual process version of F-LLL algorithms is 
to divide the overall process of LLL algorithm into 
two individual procedures. The reduction process of 
the novel algorithm is modified by searching for the 
potential column swaps through the whole basis. 
The basis which satisfies a searching criterion is 
recorded as the coordinate basis. Then we mainly 
discuss how to design such a searching criterion. 
Random select (RS) means to randomly choose a 
basis from the coordinate basis set. This scheme 
sometimes may not be guaranteed as the optimal. 
We design two criteria. First, offset coefficient 
selection criterion (OCSC) is based on choosing the 
largest deviation from all the coordinate pairs. The 
other criterion, maximum slope selection criterion 
(MSSC), receives the best trade-off. It is similar to 
get the maximum slope that indicates the fast 
decline direction. After an iteration of column swap, 
we continue searching for the potential column 
swap until there is no proper basis satisfying the 
searching criterion. When no basis is selected, 

column swap terminates and global size reduction is 
applied to basis.  

The rest of paper is organized as follows. Section
Ⅱ presents the universally-acknowledged MIMO 
system model and gives a brief introduction to the 
LLL algorithm. Section Ⅲ  provides details 
regarding F-LLL and novel individual processes 
versions, and lists ideas of the different designations 
of searching criterion and theoretical 
statements .Section Ⅳdemonstrates our simulation 
results and SectionⅤ shows the conclusions. 
Notation: The real and imaginary parts of x are 
denoted as  x and  x respectively. The inner 
product in the complex Euclidean space between 
vectors u and v is defined as , Hu v u v  and the 

Euclidean length is ,u u u in n .The arbitrary 
integer closest to x is denoted as 「 」. The transpose, 
Hermitian transpose, and inverse of a matrix H are 
defined as TH , HH and 1H  respectively. 
Expectation of H is represented by  E H with 
variance 2 . A large O notation     f x O g x

means that for sufficiently large x ,  f x is bounded 
by a constant time  g x in absolute value. 

2 MIMO System Model and LLL 
Algorithm 

2.1 MIMO System Model 

Here we use an N M channel matrix to denote a 
MIMO system with M  transmit antennas and N  
receive antennas. It is assumed that the transmitted 
signal at the m-th transmit antenna is mx , and data 
received at the n-th receive antenna is my
( mx j   , ny j   ). A common signal 
alphabet  is used for all mx  . Over the MIMO 
channel, the received signal vector is represented as 
follows: 

  y Hx                           (1)
  

Matrix H consists of M N independent and 
identically-distributed ( . .i i d ) complex Gaussian 
coefficients with zero mean and unit variance. Note 
that n is assumed to be an . .i i d complex Gaussian 
vector with unit variance, 2[ ] 2HE nn I . 

2.2 LLL Algorithm 

WSEAS TRANSACTIONS on COMMUNICATIONS Huazhang Lv, Jianping Li, Weibo Qiu

E-ISSN: 2224-2864 106 Volume 15, 2016



 

 

The LLL algorithm is proposed to find a matrix 
with nearly orthogonal column vectors so as to 
generate the same lattice. With the LLL algorithm, 
the lattice reduction can be performed for the M-
basis MIMO system with the N M channel matrix. 
We concentrate on real-valued matrix for lattice 
reduction in MIMO system. 

Definition 1 (LLL Reduction [18]): A basis 
m nH  is an LLL reduction process with

1( 1)
4

   , and the upper triangular factor 

,i jR r   in its QR decomposition r r rH Q R 

satisfies the following inequalities: 

   , ,

1
2r rl k l l

R R   , 1 2l k M                        

(2) 

     2 2 2

1, 1 , 1,r r rk k k k k k
R R R

  
    , 2,..., 2k M      (3)                  

Where   ,r l k
R denotes the  ,l k th entry of rR . Ineq. 

(3) is the Lovász condition, and basis will do the 
column swap procedure only when Ineq. (3) is 
violated. is a real number arbitrarily chosen from

1( ,1)
4

 while 3
4

  is widely shared as meeting a 

good complexity-quality trade-off coefficient. At 
last, the LLL algorithm generates a LLL-reduced 
matrix from the real-valued channel matrix rH . 

 
3 Individual Processes Version of Fix-
LLL Algorithm 

3.1 Fix-LLL algorithm 

Detailed procedure of F-LLL algorithm is showed 
in Table 1. 

The complexity of LLL or F-LLL algorithm is 
mainly located at size reduction (line 5-11 in Table 
1) and column swap procedure (line 12-20). 
Parameter l ranges from  1, 1k  (line 5) which is 
called global size reduction. 

In F-LLL algorithm, we introduce a novel 
criterion to substitute the round method. The fix 
method rounds the elements to the nearest integers 
towards zero. When the value of 

   , / ,r rR k l k R k l k l   is within the interval
 1, 1  , the value of   will be forced to zero. 

( ( , ) ( , ))r rfix R k l k R k l k l            (4) 
If  has larger probability of converging to zero, 

there is higher probability of directly skipping the 
size reduction. Consequently, a multiple of 
computation complexity in size reduction will be 
saved (line 8-9). 

Table 1 Process of Novel F-LLL Algorithm based 

on QR decomposition 

Input: Qr，Rr，δ 
Output: The F-E-LLL-reduced basis 
No. Algorithm process 

1 initialize r nT I  
2  , 2rn size H  
3 2k   
4 while k  n 
5    for 1: 1l k   
6        , / ,r rfix R k l k R k l k l      
7       if 0   
8             1: , 1: , 1: ,r r rR k l k R k l k R k l k l        
9             :, :, :,r r rT k T k T k l     

10 end if 
11 end for 
12    if      2 2 21, 1 1, ,r r rR k k R k k R k k       
13 swap columns 1k   and k  in rR  and rT  
14       find a Givens rotation G to restore the 

upper triangular structure of R 
15         1: , 1: 1: , 1:r rR k k k n GR k k k n      
16         :, 1: :, 1 : H

r rQ k k Q k k G    
17       max 1, 2k k   
18    else 
19      1k k   
20    end if 
21 end while 

We should point out that in the size reduction 
procedure,  is used to adjust the elements in 
matrices rR and rT . In the subsequent judge of 
Lovász condition (line12), only terms  1, 1rR k k  ,

 ,rR k k and  1,rR k k are needed. During size 
reduction (line 7-10),  1, 1rR k k  and  ,rR k k

remain unchanged but  1,rR k k  will be modified. 
As an example when 1l   is showed below: 

       ( ( , ) ( , ))r rfix R k l k R k l k l                     (5) 
In a word, size reduction is closely related to the 

subsequent column swap procedure. Changes of any 
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key parameter will influence the column swap 
procedure. Accordingly, based on the original LLL 
algorithm, although F-LLL changes the criterion of 
size reduction, the whole process of column swap is 
influenced. In other words, complexity reduction in 
size reduction does not mean complexity reduction 
in column swap. The results usually depend on the 
channel matrix H used. However, the simulation 
results show that if an algorithm has higher 
probability of skipping size reduction, it will possess 
lower probability of doing column swap. But there 
is no clear tendency of complexity reduction 
between size reduction and column swap. 

3.2 Individual Process Version of Fix-LLL 
Algorithm 

Here we introduce a novel individual process 
version of F-LLL algorithm which is designed with 
a real-valued matrix. The main idea of this novel 
algorithm is to divide the overall process of LLL 
into two independent procedures. The reduction 
process is modified by searching for potential 
column swaps through the whole basis (Line 3-7 in 
Table 2). Each potential column swaps 
corresponding to a value of k . The entire potential 
column swaps are recorded as coordinates (line 
8).We use a random selection scheme (RS) to 
randomly select a value of k in the corresponding 
column swap (line 12-20 in Table 1). After the swap 
is accomplished, the basis is updated. We should re-
search the entire basis to find if there is any column 
not satisfying the Lovász condition. We do the 
procedure: search, select and swap repeatedly until 
all the values of k brought into Lovász condition 
(line 4) is not violated, we finish the independent 
column swap procedure (line 3-7). 

Table 2 Individual Processes Version of Fix-LLL 

Algorithm 

Input: rH  ,  
Output: , ,r r rQ R T  
No. Algorithm process 

1 r nT I  ,    ,r r rQ R QR H  
2  , 2rn size H , 2k   
3 for 2 :1:k n  
4 if      2 2 21, 1 1, ,r r rR k k R k k R k k       
5         Record all these basis which isn’t satisfied 

with Lovász condition 
6        end if 
7 end for 

8 Randomly select a value of k  and do column 
swap procedure 

9 Repeat line 3 to line 8 until all the values of k  are 
satisfy the Lovász condition 

10 Global size reduction procedure based on Fix 
method 

11 Obtain matrix , ,r r rQ R T  

Line 10 in Table 2 leads in global size reduction 
which is equivalent to line 5-10 in Table 1.When we 
apply the fix method into global size reduction, only 
size reduction is affected. This global size reduction 
is taken to achieve a fully-reduced basis for linear 
detection, such as zero forcing (ZF) and minimum 
mean-square error (MMSE).  

We should point out that the random select (RS) 
scheme is improper for selection of a basis. RS may 
not obtain a promising trade-off between 
performance and computation complexity. 

  
3.3 Offset Coefficient Selection Criterion 

OCSC is introduced in this section .In Lovász 
condition      2 2 21, 1 1, ,r r rR k k R k k R k k      , A 
and B represent the left and right sides respectively: 

 2 1, 1rA R k k                                         (6) 

   2 21, ,r rB R k k R k k                               (7) 
The absolute tolerance between A and B is 

defined as : 

A B                                                        (8) 
By searching all values of k, we select the 

minimum value of , marked as  min min
A B   . The 

offset coefficient in the Least Mean Square (LMS) 
algorithm is defined by measuring the rate of 
deviation: 

min

min min

1M   
 


  
                            

      (9) 

The basis having the largest rate of deviation 
needs to do column swap first. Finding the largest 
rate of deviation is equal to finding the largest value 
of  . We search all the candidate column swap pairs 
to find out the largest absolute tolerance:

 max A B . 
We will give the detailed proof below. First we 

introduce the definition of LLL potential: 
Definition 2 (LLL Potential [5]): 

   1 1
2

1 1

,
t t

t
N N

N i

i r
i i

D D R i i
 



 

                          
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(10) 

Where      
2 2 2

det 1,1 2,2 ,i i r r r
D L R R R i i   and 

iL is defined as the sub-lattice spanned by
     1,1 , 2, 2 , ,r r rR R R i i . 
The size reduction won’t change the value of D  

because size reduction won’t change the value of 
diagonal elements in rR .The value of D only 
changes during the column swap procedure. During 
column swap, LLL potential is strictly decreased. 
Also after finite iteration LLL algorithm will 
terminate. Our goal is to design a fast convergence 
criterion which equals to make the potential 
decreases fastest. If LLL iteration happens at index 

k, diagonal elements are all updated that  
~

,rR k k  

and  
~

1, 1rR k k  .So the updated potential can 
describe as: 

     2 1 2 1 21~ ~ ~ ~

, 1, 1 ,
1

1,

t t tt
N N k N kN

i i k k k k
i
i k k

D R R R
   

 

 

       (11) 

After computation and simplification, 
~
D can be 

represented by original diagonal elements before 
LLL iteration and potential D : 

   
 

2 2
~

2

1, ,

1, 1

r r

r

R k k R k k
D D

R k k

 


 
                       (12) 

At each round LLL iteration, we want to select 
the fastest decline of LLL potential. Fastest decline 

is defined by difference between D and
~
D : 

~
decline D D                                                    (13) 

   
 

2 2

2

1, ,
1

1, 1

r r

r

R k k R k k
decline D

R k k

    
   

 (14)

      
 

2 2 2

2

1, 1 1, ,

1, 1

r r r

r

R k k R k k R k k
decline D

R k k

      
  

  
 

                                                                          (15) 
From the definition in (8),  max A B   that: 

      2 2 21, 1 1, ,r r rR k k R k k R k k        

(16) 
In real field,     22 , ,r rR k k R k k .When 1  , that 

parameter  equals to the numerator in equation (15): 

  2
1, 1r

decline D
R k k

 
 
   

                            (17) 

For a certain value of   2
1, 1rR k k  , by 

searching the maximum of  it will get the largest 

value of decline . So it will cause the fastest decline 
in LLL potential. But selecting  max A B doesn’t 
mean selecting maximum value of A. Only if the 

  2
1, 1rR k k  remains unchanged, searching 

 max A B will lead to a fast decline in LLL 
potential. But sometimes we can’t guarantee that in 
each iteration of LLL algorithm terms 

  2
1, 1rR k k   remains the same. So the effect of 

OCSC will be limited and may not be the optimal 
sometimes. The detailed proof has been completed. 

However, when the system size is small, such as a 
4 4 MIMO system, usually not too many pairs are 
available for the scheme to select. Consequently, the 
actual effect of OCSC may be unrealized. Usually in 
this small MIMO system, the performance of OCSC 
is very likely to be identical with RS scheme. 
Increasing the size of the MIMO system will 
improve the effect of OCSC. Simulation details will 
be showed in section Ⅴ. 

 

3.4 Maximum Slope Selection Criterion 
The other criterion called MSSC also modifies 

the RS scheme. Still the definitions of A, B and  in 
section C are used: 

 2 1, 1rA R k k    

   2 21, ,r rB R k k R k k    

A B                                                          (18) 

We still first calculate . This time ( )S Slope
B


 is 

used to measure the proportion of  occupying
   2 21, ,r rR k k R k k  . 

     
   

2 2 2

2 2

( )

1, 1 1, ,
1, ,

r r r

r r

S Slope
B

R k k R k k R k k
R k k R k k







    


 
         

(19)  
If we get larger S , there is a bigger gap between A 

and B. Consequently, this pair needs to be modified 
first. In general, determining S in MSSC is similar 
to getting the maximum curve slope, which suggests 
the largest difference between A and B .In a word, 
OCSC aims at the largest  and MSSC aims at the 

largest
B
 . From the angle of measurement error, 
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OCSC is absolute tolerance and MSSC is relative 
tolerance. 

Here we will give the detailed proof of efficiency 
of maximum slope selection criterion. Still follows 
the flow of proof above: 

      
 

2 2 2

2

1, 1 1, ,

1, 1

r r r

r

R k k R k k R k k
decline D

R k k

      
  

  
 

                                                                                      (20) 
From equation (18): 

    2 2
max 1, ,r rS R k k R k k                               (21) 

    
 

2 2

max

2

1, ,

1, 1

r r

r

S R k k R k k
decline D

R k k

    
  

  
 

 

(22) 
When 1  , in equation A: 

 2 1, 1rA R k k                                                     (23) 

In real field,     22 , ,r rR k k R k k .Compared to 
equation (12), terms equation (21) can be substituted: 

   
 

2 2~

2

1, ,

1, 1

r r

r

R k k R k kD
D R k k

 


 
                            (24) 

~

maxS Ddecline D
D

  
 
 

                                           (25) 

~

maxdecline S D                                                     (26) 

Equation in (23) means that 
~
D is the value of 

potential before LLL iteration. This may be a fixed 
value. The only various factor that influences the 
term decline is parameter S  which is defined in (18). 
When we search the largest maxS , this will cause the 
fast decline of the potential of LLL. The full proof 

has been completed. 

In a word, OCSC aims at largest   and MSSC 

aims at largest ratio  
B
  . From the angle of 

measurement error, OCSC is absolute tolerance and 
MSSC is relative tolerance. 

4 Simulation Results 
We use computer simulations to verify the 

theoretical claims on F-LLL and its individual 
process versions. Channel matrix H and white 
Gaussian noise n are randomly 
generated .Constellation mapping is settled with 
16QAM.The system consists of 6 transmit antennas 
and 6 receive antennas (6  6).Symbol size is 
10000.SNR is defined as symbol energy per 
transmit antenna versus noise power spectral density. 
We separately use coding gain to measure the 
performance of each algorithm at a fixed symbol 
error rate (SER) and float operations (flops) as an 
evaluation criterion of computation complexity. 

4.1 Average Number of Iterations and 
Computational Complexity 

Average number of iterations is measured by the 
number of times doing size reduction and column 
swap. The computation complexity is calculated as 
the number of flops in real field. The results are 
listed in Table 3. 

ML algorithm and ZF-SIC are also simulated for 
comparison. Since the RS scheme is based on 
random selection from potential column swaps, we 
simulate this scheme twice to see that we have the 
probability of not achieving a fixed result each time. 
Another point out is that the search of potential 
column swaps in individual process version of F-
LLL requires additional flops. This extra procedure 
is demonstrated in line 5 in Table 2. 

 
Table 3 Comparison of different algorithms in both iteration and complexity 

Number of iteration LLL F-LLL RS-1-F-LLL RS-2-F-LLL OCSC-F-LLL MSSC-F-LLL 

Size reduction 35 6 22 22 23 22 
Column swap 29 39 29 28 29 24 

Total 64 45 51 50 52 46 
 

Computational 
complexity LLL F-LLL RS-1-F-LLL RS-2-F-LLL OCSC-F-LLL MSSC-F-LLL 

Flops of Size 
reduction 1886 940 844 838 886 842 

Flops of column 2404 1892 2392 2252 2356 2040 
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swap 
Flops of other 

generations 0 0 330 319 330 275 

Total 4290 2832 3566 3409 3572 3157 

Flops save to LLL 0% 33.97% 16.88% 20.54% 16.74% 26.41% 
As showed in Table 3, LLL is the optimal 

algorithm and F-LLL terminates with the fewest 
flops. LLL owns the largest computation complexity. 
MSSC-F-LLL terminates with the fewest flops 
among all the individual process version of F-LLL 
algorithms. Since the random scheme is randomly 
choosing a pair to do column swap, each algorithm 
run has probability of achieving uncertain results. 
OCSC-F-LLL is inferior to MSSC-F-LLL in 
complexity. 

4.2 Simulation results of performance 
We simulate the performance of LLL algorithm 

and the individual process version of F-LLL 
algorithms in constellation16QAM. Each algorithm 
uses linear SIC as an aided algorithm. The ML 
algorithm and ZF-SIC are also included for 
comparison.

 

Fig 1 Performance of LLL and family of individual 

processes version of F-LLL detectors in a 16QAM 

modulated 6 6  MIMO system 

The analysis is combined with iteration and 
complexity results in Table 3, as follows: 

Except ML, LLL owns the best performance and 
highest computation complexity in simulation. 
Although F-LLL is featured by the lowest flops, it 
has low stability and performance. F-LLL has a 
1.185dB performance gap compared with LLL. The 
individual process version of F-LLL algorithms try 

to separate size reduction and column swap apart. 
On the facet of designing searching scheme, RS-F-
LLL algorithm is featured by random selection in 
coordinate pairs of basis for subsequent column 
swap procedure. This plan will outperform F-LLL 
but is limited by uncertain results because the 
algorithm may not select the same coordinate pair 
every time.  

OCSC-F-LLL and MSSC-F-LLL algorithms 
reduce 16.74% and 26.41% of flops, respectively, 
and their performance losses are 0.29dB and 0.51dB, 
respectively, compared with LLL algorithm. These 
two searching schemes may enjoy a better trade-off 
between performance and computational complexity. 
They can modify the shortcomings of instability and 
large loss of performance in F-LLL.   

Figure 2 shows the complexity comparisons of 
different algorithms from 2 2 to 8 8 MIMO 
systems. 

 

Fig 2 Complexity comparisons of different LLL 

algorithms from 2 2  to 8 8  MIMO systems 

From 2 2 to 8 8 MIMO systems, LLL pursues the 
best SER performance as well as the highest 
computational complexity. Although F-LLL often 
results in larger complexity reduction, its stability is 
unsatisfactory. In a special case with the 4 4  
MIMO system, F-LLL shows the highest 
computation complexity among all the individual 
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process version of F-LLL algorithms. In general, 
MSSC-F-LLL owns the lowest complexity and with 
the increasing size of MIMO systems, OCSC and 
MSSC gradually exhibit their superiority.  

Performance of MSSC-F-LLL from 2 2  to 8 8  
MIMO systems is shown in Fig.3. The overall trend 
of performance variation is that with the system size 
increasing, that the whole performance of system 
that combined with MSSC is getting worse. But 
since the channel matrix in differrent size of MIMO 
system is generated randomly, so the detail analysis 
of the performance variation is needed further 
research and beyond the scope of this paper.

 
Fig 3 Performance comparisons of MSSC-F-LLL 

algorithm from 2 2  to 8 8  MIMO systems 

5 Conclusions 
Families of modified-version F-LLL algorithms 

are proposed. F-LLL algorithm directly changes the 
criterion of size reduction and the whole algorithm 
has higher probability of skipping the size reduction, 
at the cost of large computation complexity though. 
F-LLL usually leads to large performance loss 
especially when the system size or the number of 
iterations increases. Also F-LLL shows low stability 
and immeasurable performance. 

Consequently, we introduce a new idea of 
individual process version of F-LLL algorithms. 
This idea is to treat size reduction and column swap 
as two individual procedures, so we can optimize 
them separately. Column swap is first done that all 
the potential swaps are selected and remain to be 
chosen for subsequent swap procedure. How to 
design the selection scheme is mainly discussed. 
The simplest method is the RS scheme, as it 
randomly chooses one pair from the coordinate set. 

However, the algorithm based on the random 
scheme may have probability of receiving different 
results every time. OCSC chooses the pair with the 
largest rate of deviation, which is equal to find the 
largest difference between  2 1, 1rR k k   and 

   2 21, ,r rR k k R k k  .MSSC is equivalent to 

acquiring the largest slope
B
 , which means the 

fastest decline direction and may cause the fast 
convergence. Simulation results manifest that both 
OCSC and MSSC can make a better trade-off 
between performance and algorithm complexity. 
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